A Modern Resource and Reserve Modelling Process for Structurally Complex Coal Deposits

CIM - May, 2022

Dustin Meisburger, P.Eng., SME-RM – SRK Consulting

Andre Deiss, Pr.Sci.Nat. – SRK Consulting

Bob McCarthy, P.Eng. - SRK Consulting

Justin Smith, P.E., SME-RM – SRK Consulting

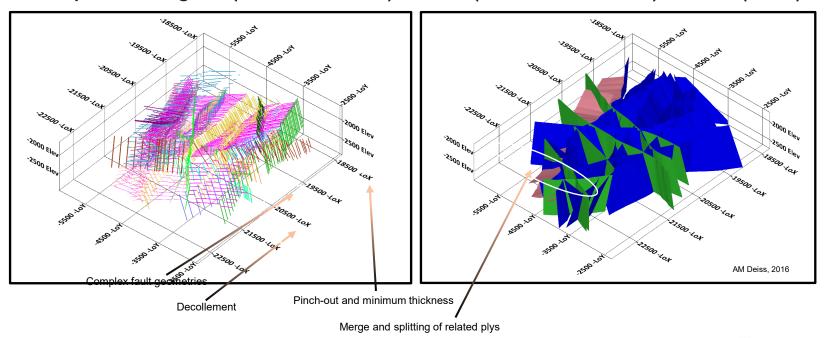
Ali Shaban - M.Sc., SRK Consulting

Introduction

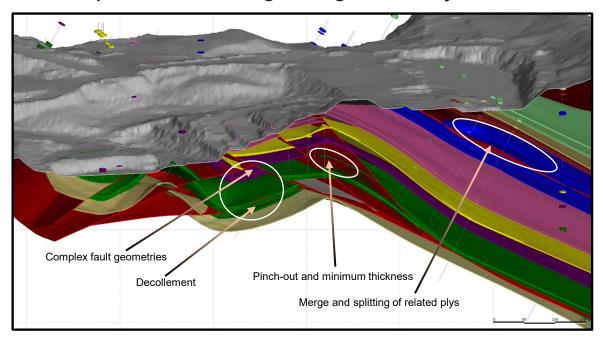
- SRK has consulted to 252 coal sites worldwide at different stages of development, offering consulting services related to:
 - exploration, geo-environmental, geological modelling, resources, mine planning, tailings, reserves and mine closure studies
- 43 sites in Canada and 14 sites in the U.S.A.

Introduction

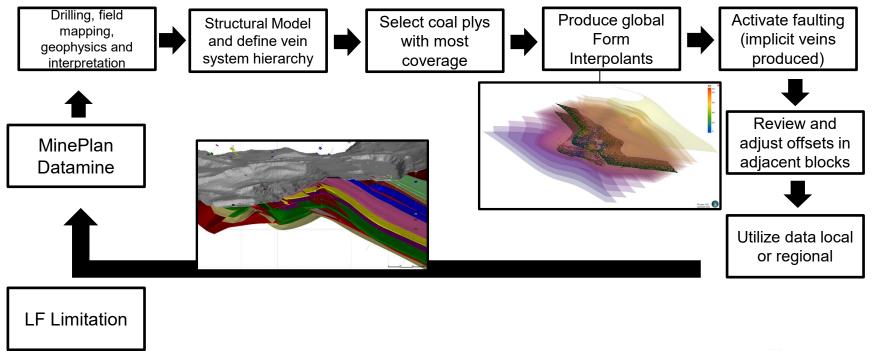
- SRK has consulted to 252 coal sites worldwide at different stages of development, offering consulting services related to:
 - exploration, geo-environmental, geological modelling, resources, mine planning, tailings, reserves and mine closure studies
- 43 sites in Canada and 14 sites in the U.S.A.


Introduction

- SRK has consulted to 252 coal sites worldwide at different stages of development, offering consulting services related to:
 - exploration, geo-environmental, geological modelling, resources, mine planning, tailings, reserves and mine closure studies
- 43 sites in Canada and 14 sites in the U.S.A.
- Geological modelling trends changing from explicit to implicit due:
 - Volume (measured and user interpreted) and rate of information being received
 - The need for consistent application of geological rules (auditability) in geological modelling
 - Reasonable representation of complex geological morphologies and relationships
 - Operations requiring a short turn around in geological and grade control models for mine planning purposes
 - Consultants require tools to reduce manual processing of geological shapes (clipping, complex shape interaction)
 - Most 3D modelling software today has some implicit modelling capability
- Coal quality estimation trends:
 - 2D to 3D (LVA)
 - Considering geostatistics to establish continuity ranges rather than fixed ranges e.g., 88-21 Hughes et. al., 1989 and JORC)
- Generally, seam aggregation (working sections) use a rigid compositing technique
- Required a flexible scenario testing tool
- Leapfrog Geo™ selected to developed a coal modelling workflow to deal with complex coal geology (FastRBF™, data sources, vein system, repeatable and leader)
- Datamine Studio RM™ selected as an interim work around (block models, resource estimates, additional attributes and scripting)
- MinePlan™ (MineSight) selected to process the working sections as the standard for coal mine planning in Canada


Explicit versus Implicit modelling

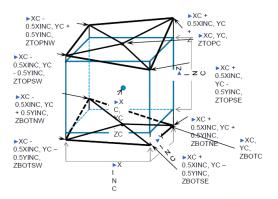
• Explicit 2D grid (X,Y, attribute), 2.5D (X,Y,Z sectional) to 3D (XYZ)



Explicit versus Implicit modelling

Solution Implicit modelling using a vein system

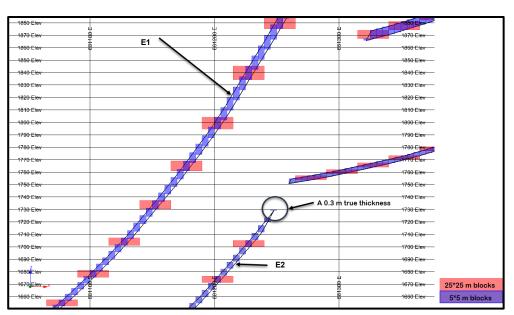
Simplified Coal Geology Model Workflow



Block Model Types and Considerations

• 3-D prism block

8



Block Model Types and Considerations

Parent cell / sub-cell or sub-block

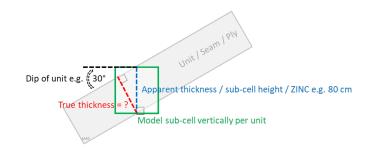
Sensitivity on volume solid block model inside solid triangulation to solid triangulation (E1)

Source	Yolume	% Difference (BM-VF)/VF					
WF	174,288,775	0.0%					
HARP BM 5.0 m	175,988,897	1.0%					
BM 25.0 m ¹	61,137,827	-64.9%					
BM 5.0 m²	135,303,220	-22.4%					
BM 2.5 m	152,616,703	-12.4%					
BM 1.0 m	165,257,403	-5.2%					
Model size	Cells (Number)						
BM 25.0 m	122,498	0.0%					
BM 5.0 m	3,305,277	2598.2%					
BM 2.5 m	13,220,995	10692.8%					
BM 1.0 m	82,631,443	67355.3%					
Model size	Size (KB)						
BM 25.0 m	22,280	0.0%					
BM 5.0 m	400,644	1698.2%					
BM 2.5 m	1,602,552	7092.8%					
BM 1.0 m	6,997,184	31305.7%					

Sensitivity on volume solid block model to solid triangulation (E1)

Source	Yolume	% Difference (BM-VF)/VF
VF	174,288,775	0.0%
HARP BM 5.0 m	175,988,897	1.0%
BM 5.0 m	174,290,402	0.0%
BM 2.5 m	174,277,209	0.0%
BM 1.0 m	174,279,807	0.0%

6/22/2022


Block Model Types and Considerations

Regularized block (single and multi-percent for mine planning)

Datamine Block Model Bridge

- Dip and dip direction
- True thickness
- All estimates applied to single node
- Determination of mean values:
 - Dip weighted by 3D area
 - True thickness weighted by 3D area
 - Qualities weighted by volume / Tonnage?
- Example of csv output

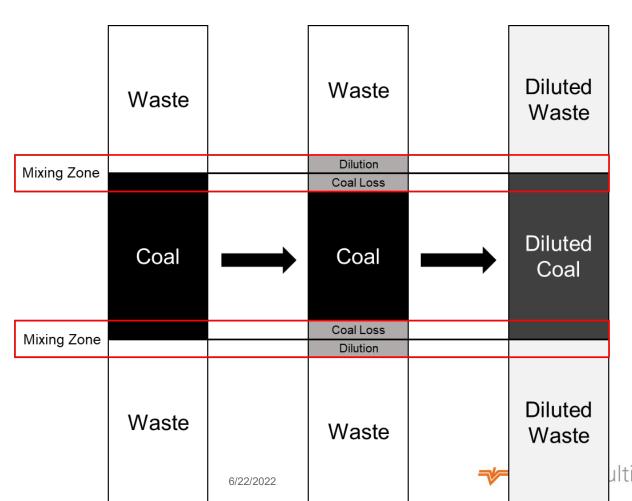
EAST	NORTH	PLYID	FLTBLK	CLASS	ZTOP	ZMID	ZBOT	SDIP	ATCK	ттск	ASHa	IMa	FCa	VMa	Sa	SGac
-149,810	-4,162,270	E1	4	1	6,094.29	6,093.84	6,093.39	15.69	0.91	0.88	10.34	0.60	67.58	21.14	0.87	1.36
-949,817	-4,162,277	E1	4	1	6,092.67	6,092.21	6,091.75	15.69	0.91	0.88	10.34	0.60	67.59	21.12	0.87	1.36
-949,824	-4,162,284	E11	4	1	6,091.04	6,090.58	6,090.12	14.35	0.91	0.89	9.54	0.60	68.74	20.74	0.89	1.35
-949,831	-4,162,292	E11	4	1	6,089.40	6,088.94	6,088.48	15.74	0.93	0.89	10.35	0.60	67.60	21.09	0.87	1.36
-949,786	-4,162,265	E2	4	1	6,094.52	6,094.06	6,093.61	15.64	0.91	0.88	9.53	0.60	68.75	20.74	0.89	1.35
-949,793	-4,162,273	E2	4	1	6,092.73	6,092.27	6,091.81	15.64	0.91	0.88	9.55	0.60	68.75	20.73	0.89	1.35
-949,799	-4,162,280	E2	4	1	1,090.95	1,090.49	1,090.04	15.72	0.91	0.88	9.57	0.60	68.74	20.71	0.89	1.35

True Thickness = Apparent thickness * $sin(90^{\circ} - Dip)$ = 80*sin(60)= 69.28 cm

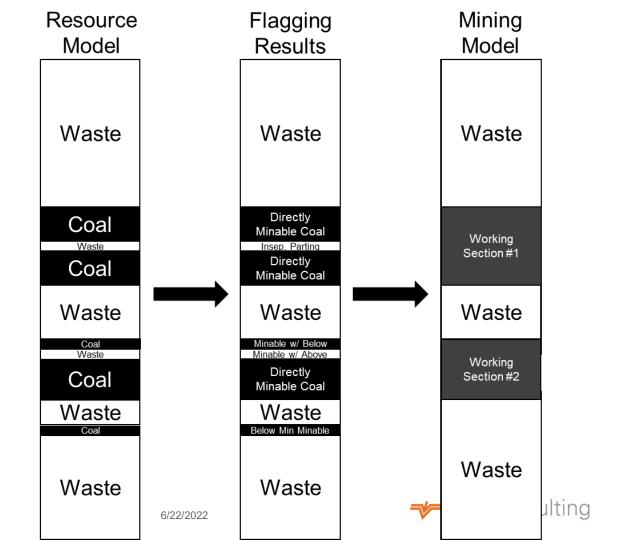
Advantages for Mining Engineers

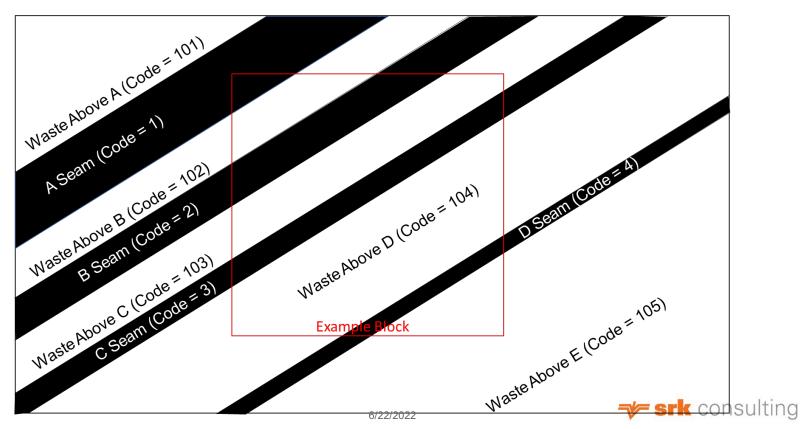
- Working Sections / Seam Aggregation is controlled by the Mining Engineer
 - In existing methods, this is often controlled at compositing limiting the ability of mining engineer to adjust
 - Engineers can now easily conduct cutoff sensitivity and review impacts of equipment/mining method adjustments
- Loss and Dilution is taken into account in working sections
 - Working Sections set minimum cutoff for true thickness and maximum cutoff for diluted ash
 - Diluted ash cutoff considers dilution both from included partings as well as mixing zones at exterior coal/waste contacts

From Resource Model to Reserve Model


Loss and Dilution

Working Sections


3DBM Coding


Applying Loss and Dilution

Flagging Working Sections

Coding the 3D Block Model

Future Work

Removal of intermediate processing steps

- Current process requires three software packages and intermediate steps
- Process should seamlessly transition from Leapfrog to MinePlan 3D Block Model

Working Sections directly on 3DBM

- Working section using 3DBM directly can improve positional accuracy by removing GSM step
- Currently must be mindful of cross-dip block dimension and steepness of dips in this direction to ensure positional accuracy of model

Questions?

- Andre Deiss, Pri.Sci.Nat. Principal Consultant (Geology)
 - Adeiss@srk.com
- Dustin Meisburger, P.Eng. Senior Consultant (Mining)
 - <u>Dmeisburger@srk.com</u>